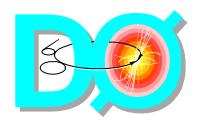


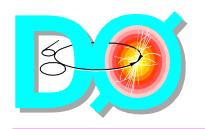
UML State Diagrams


A Simple State Machine

Final State Event Trigger Action State 3 Event Trigger Action State 2 State 3 Self Transition

State Machine

A state machine is a behavior which specifies the sequence of states an object visits during its lifetime in response to events, together with its responses to those events

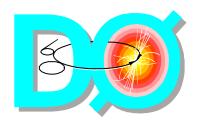


State

A *state* is a condition during the life of an object during which it satisfies some condition, performs some activity, or waits for some external event

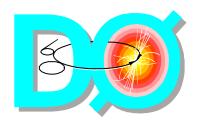
Event

An *event* is the specification of a significant occurrence. For a state machine, an event is the occurrence of a stimulus that can trigger a state transition

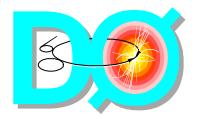

Transition

A transition is a relationship between two states indicating that an object in the first state will, when a specified set of events and conditions are satisfied, perform certain actions and enter the second state. A transition has:

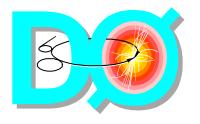
Transition Components


- a source state
- an event trigger
- an action
- a target state

JFB


Self-Transition

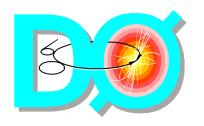
A *self-transition* is a transition whose source and target states are the same


Action

An *action* is an executable, atomic (with reference to the state machine) computation. Actions may include operations, the creation or destruction of other objects, or the sending of signals to other objects (events).

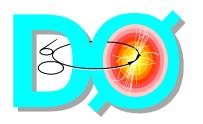
A Simple State Machine

Final State Event Trigger Action State 3 Event Trigger Action State 2 State 3 Self Transition

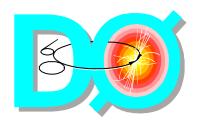

Advanced States

Entry and Exit Actions

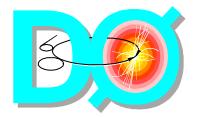
State Name


Entry | Entry Action

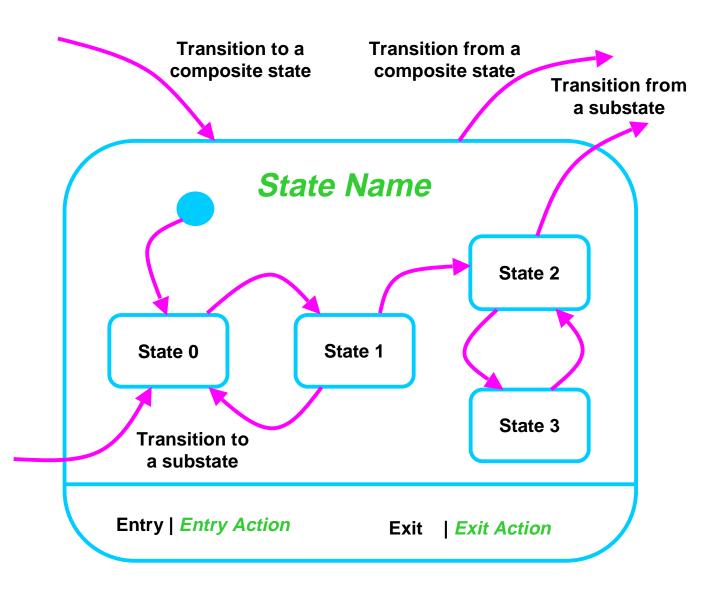
Exit | Exit Action

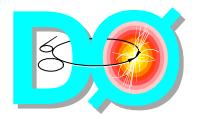

Substates

- A substate is a state that is nested in another state
- A state that has substates is called a composite state
- A state that has no substates is called a simple state
- Substates may be nested to any level


Advanced Transitions

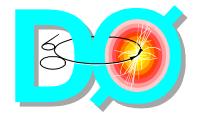
- Transitions to a composite state
 - If a transition is to a composite state, the nested state machine must have an initial state
 - If a transition is to a substate, the substate is entered after any entry action for the enclosing composite state is executed followed by any entry action for the substate


Advanced Transitions


- Transitions from a composite state
 - If a transition is from a substate within the composite state, any exit action for the substate is executed followed by any exit action for the enclosing composite state
 - A transition from the composite state may occur from any of the substates and takes precedence over any of the transitions for the current substate

Advanced State Machine

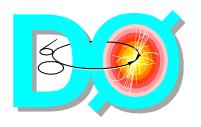
Sub-States


An Implementation

State Table

State	State	FirstIndex	LastIndex	EntryAction	ExitAction
	0	0	1	Act1	Act2
	1	2	2	None	Act3
	2	3	4	None	None

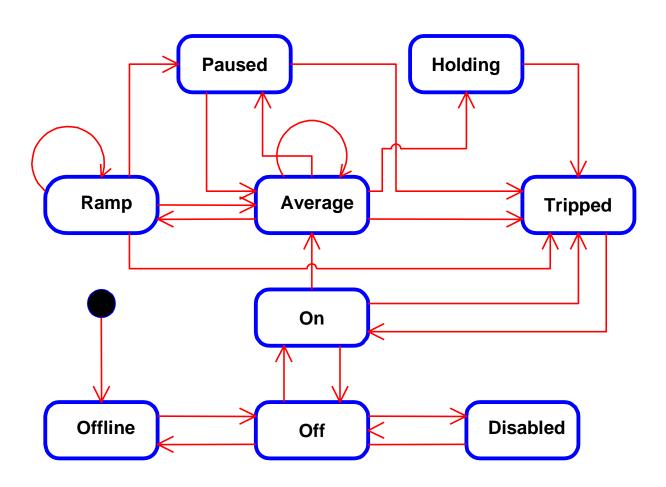
Transition Table


Index	Trans	Events	Mask	Action	NewState
	1	E0 & E1	E0 E1	Act0	1
	2	E1	E1 E2	None	2
	3	*	*	*	*

/ * +

An Implementation

```
MODULE stateMachine - Sequential State Machine Package Declarations
 DESCRIPTION:
    The stateMachine.h header file contains definitions of external
    interfaces to the state machine package
#define ssmMask(event) (1<<event)</pre>
 enum {SSM_TERMINAL_INDEX = (unsigned short int)-1};
 enum {SSM NULL ACTION = NULL};
 enum {SSM_MAX_EVENT = 31};
 typedef void *SsmId_t;
 typedef int (*SsmAction_t)(const SsmId_t stateId, void const *context,
                       const unsigned short int action);
 typedef void (*SsmDisplay_t)(char *text);
 typedef unsigned long int SsmEventSet_t;
 /* State table element */
 typedef struct
    unsigned short int firstIndex; /* First index in transition table */
                                   /* Last index in transition table */
/* Entry action index */
   unsigned short int lastIndex;
    unsigned short int inAction;
                                    /* Exit action index */
    unsigned short int outAction;
    } SsmState_t;
 /* Transition table element */
 typedef struct
                                   /* Event value */
    SsmEventSet_t events;
                                   /* Event mask */
    SsmEventSet_t mask;
                                  /* Action index */
    unsigned short int action;
    unsigned short int newState; /* New state */
    } SsmTransition_t;
 extern SsmId_t ssmCreate(const unsigned short int initState,
                     const unsigned short int termState,
                     const unsigned short int maxIndex,
                     const SsmEventSet_t initEvents,
                     const SsmAction_t actionFunct,
                     void const *context,
                     SsmState_t (*stateTable)[],
                     SsmTransition_t (*transTable)[]);
 extern int ssmDelete(const SsmId_t stateId);
 extern int ssmEventClear(const SsmId_t stateId,
                     const unsigned int event);
 extern int ssmEventSet(const SsmId_t stateId,
                    const unsigned int event);
 extern unsigned int ssmExecute(const SsmId_t stateId);
 extern unsigned short int ssmCurStateGet(const SsmId_t stateId);
```



Problems with UML notation

- When more than one transition from a state is enabled there is no method for specifying precedence
- For nested states there is no method for specifying precedence of the enclosing or enclosed state

Example: High Voltage Channel

